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Abstract—Understanding how resources of High Performance
Compute platforms are utilized by applications both individ-
ually and as a composite is key to application and platform
performance. Typical system monitoring tools do not provide
sufficient fidelity while application profiling tools do not capture
the complex interplay between applications competing for shared
resources. To gain new insights, monitoring tools must run
continuously, system wide, at frequencies appropriate to the
metrics of interest while having minimal impact on application
performance.

We introduce the Lightweight Distributed Metric Service
for scalable, lightweight monitoring of large scale computing
systems and applications. We describe issues and constraints
guiding deployment in Sandia National Laboratories’ capac-
ity computing environment and on the National Center for
Supercomputing Applications’ Blue Waters platform including
motivations, metrics of choice, and requirements relating to
the scale and specialized nature of Blue Waters. We address
monitoring overhead and impact on application performance and
provide illustrative profiling results.

Catagories and Subject Descriptors: C.4 [Computer Systems
Organization]: Performance of Systems — Measurement tech-
niques; Performance attributes; K.6.2 [Management of Com-
puting and Information Systems]: Installation Management
— Performance and Usage Measurement; C.2.3 [Computer
Communication Networks]: Network Operations — Network
monitoring

General Terms: Management, Monitoring, Performance

Keywords: resource management, resource monitoring

I. INTRODUCTION

There exists an information gap between coarse-grained
system event monitoring tools and fine-grained (instruction,
function, or message level) application profiling tools. Coarse-
grained monitoring tools record the status of hardware pe-
riodically, typically on an interval of minutes. The data is

TThis research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award number
ACI 1238993) and the state of Illinois. Blue Waters is a joint effort of
the University of Illinois at Urbana-Champaign and its National Center for
Sugercomputing Applications.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

SC14, November 16-21, 2014, New Orleans
978-1-4799-5500-8/14/$31.00 (©2014 IEEE

automatically checked for out-of-normal conditions that are
then communicated to system administrators for investigation.
Profiling tools typically target fine-grained characterizations
of specific applications execution profiles with respect to what
code sections take the most time and metrics such as cache
misses, memory bus bandwidth, and MPI barrier time so the
developer can tune for more efficient or balanced operation.
Along with the detailed insight, however, comes significant
execution overhead and developer time for analysis and code
tuning. Because of these costs, profiling and tuning are usually
episodic activities [1] rather than part of normal execution.
The normal behavior of the unmodified application across the
full span of inputs used on a daily basis thus remains largely
unknown. Further, its impact on system behavior and other
applications is difficult to infer from such isolated profiling.

Sandia National Laboratories (SNL) and Open Grid Com-
puting (OGC) are jointly developing OVIS, a suite of High
Performance Computing (HPC) monitoring, analysis, and feed-
back tools, to fill this information gap. The long-term goal is
to obtain insight into behavioral characteristics of individual
applications with respect to platform resource utilization (e.g.
memory, CPU, network, power) and how platform resources
are being utilized, stressed, or depleted due to the aggregate
workload and job placement on the resources. In order to reach
this goal, system-wide data must be continuously collected
at frequencies suitable for resource utilization analysis. The
data collection, transport, and storage component of the OVIS
suite is a low overhead monitoring tool called the Lightweight
Distributed Metric Service (LDMS). LDMS provides more
flexibility and proven scalability with respect to dynamic
configuration and variety of both transport and storage support
than any monitoring software we have evaluated. LDMS scales
well to many thousands of nodes and to data sampling intervals
on the order of one second. Since the overhead is low, LDMS
can be deployed on a continuous basis across an entire HPC
platform.

We elaborate on the motivation and utility of high fidelity,
whole HPC system monitoring, describing the LDMS frame-
work and its applicability to this task. Our functional compari-
son with other system level monitoring tools justifies our claim
that LDMS is a better fit for this regime. We present details
from production deployments on two significantly different
HPC systems: 1) The National Center for Supercomputing
Applications (NCSA) Cray XE6/XK?7 capability platform Blue



Waters, and 2) one of Sandia’s Infiniband connected Linux
capacity clusters, Chama. For each case we include: motivation
for resource utilization metrics being collected; collection
overhead in terms of memory footprint, CPU utilization, and
network load; and results from application performance impact
testing. Additionally we present illustrative characterizations
derived from this data which demonstrate both system and
application perspectives. This is the first presentation at this
size and fidelity of the Blue Waters Gemini based High
Speed Network (HSN) performance counter data. Finally we
summarize and present future work.

II. MOTIVATION AND GOALS

Large scale tightly coupled scientific application perfor-
mance is subject to effects of other concurrently running
applications that compete for the same shared resources (e.g.,
network bandwidth, shared file systems) and to application
placement effects, even in the absence of such contention.
Hence there is a significant body of work dedicated to optimiz-
ing application resource allocation for various objectives (e.g.,
[2]-[5]). Those carrying out such work in shared production
environments rarely have access to detailed information of ma-
chine state, such as what competing applications are running
concurrently on the system and their resource demands.

Cray XE/XK systems, which are widely-used in scientific
computing (e.g., NCSA’s Blue Waters, NERSC’s Hopper and
Los Alamos’s Cielo), have a shared network architecture [6],
[7] in which traffic between nodes dedicated to one application
may be routed through Gemini network elements that are
directly connected to nodes belonging to other applications.
Thus not only may one application’s performance be impacted
by another application’s HSN traffic, but also information
about congestion along an application’s traffic routes may not
be accessible to that application. Bhatele et. al. [8] have
observed ranges of execution time of a communication heavy
parallel application from 28% faster to 41% slower than the
average observed performance on a Cray XE6 system and have
attributed this significant performance variation to impacted
messaging rates due to contention with nearby applications
for the shared communication infrastructure.

The lack of data from a system perspective prevents users
from understanding the sometimes large variations experienced
by similar application runs and limits their ability to more
optimally place or configure jobs. Relatedly, diagnosing system
issues when degraded application performance has been expe-
rienced is difficult when there is limited data on the state of the
system and the expected behavior. At NCSA and Sandia our
large scale HPC platforms share both these problems and lack
of pertinent information. This has motivated our work in high
fidelity monitoring. Information that we deemed important to
obtain on a system-wide basis in order to gain insight into
system and application performance includes:

e Network related information: Congestion, Delivered
Bandwidth (Total), Operating System Traffic Band-
width, Average Packet Size, and Link Status

e  Shared File System information (e.g. Lustre): Opens,
Closes, Reads, Writes

e  Memory related information: Current Free, Active

e CPU information: Utilization (user, sys, idle, wait)

III. REQUIREMENTS
A. Blue Waters

NCSA’s Cray XE/XK platform Blue Waters [9] is com-
prised of 27,648 nodes. The network is a 3-D torus built
on Cray’s proprietary Gemini interconnect. Motivation for
monitoring began with a desire to be able to better understand
the impact from network contention on application perfor-
mance. It became apparent that we needed a method to gather
and analyze more detailed information regarding the usage
of individual network links at the administrative level. We
decided to concurrently monitor other metrics that could also
help us analyze both system and user behaviors. To this end
we assembled a team of systems engineers and applications
specialists at NCSA to compile the list of desirable metrics.

Blue Water’s size, diskless method of booting, with all
compute node images being served from a central server, and
the desire to have the monitoring come up at boot time required
the monitoring libraries and binaries to be included in the boot
image and that they be relatively small given the total image
size of about 400MB.

Finally we needed to balance the value of the data against
both the performance impact on applications and data volume
that we would need to store. Though we determined that we
could achieve most goals using a one minute collection inter-
val, we decided to also investigate the impact of a one second
interval to determine the feasability of higher collection rates
using LDMS should higher fidelity observations be desired.

B. SNL Capacity Systems

The tools typically employed on SNL HPC clusters lack
the fidelity to gather resource usage data on a per job or per
user basis. Thus an extensible tool to aid HPC system admin-
istrators, users, and procurement planners to better understand
the actual compute, memory, file system and networking
requirements of SNL codes was needed.

Additional requirements for a monitoring tool are scala-
bility to thousands of nodes and collection of hundreds of
metrics per node on intervals of seconds to minutes. The reason
for such high fidelity is to enable attribution of performance
degradation to root causes in an environment where jobs can
come and go on minute time scales. A group of HPC users at
SNL provided bounds on acceptable overhead to be less than 1
percent slowdown and up to IMB memory footprint per core.

We anticipated immediate benefits from this type of mon-
itoring in the following areas:

User code optimization: Users could optimize or debug the
per node footprint of their compute jobs by reviewing data on
CPU, memory, and network usage.

Administrative debugging: Administrators could rapidly
debug job slowness for a particular user or a whole cluster.
For example, diagnosing site shared file system performance
degradation could become as simple as looking across all
systems sharing the resource for outlier access patterns.

HPC hardware procurement planning: In order to meet
the needs of their user communities, those planning future



procurements must size the number of nodes, number of com-
pute cores, memory, and interconnect bandwidth of their next
platforms. Summary usage statistics gathered over months on
memory usage, IO router bandwidth, interconnect bandwidth
and latency would give system architects solid data to use in
deriving future system design requirements.

C. Similarities and Differences

The end goals for monitoring both NCSA’s large scale Cray
system and SNL’s smaller scale capacity Linux clusters with
respect to both metrics of interest and end use of the data
are the same. However the difficulties in achieving them vary
due to differences in scale, network topologies, network tech-
nologies, and availability of network related data. In particular
the Cray HSN presented more challenges than Infiniband with
respect to implementation of the LDMS RDMA transport and
gathering metrics related to network performance.

While we utilize information from the /sys and /proc
file systems to gather information for our commodity cluster
interconnects, this was not originally an option for the Cray
HSN. In support of the Blue Waters needs, over the past year
Cray has developed a module to expose metrics aggregated
from HSN performance counters to user space at a node level
via their gpcdr module [10].

A userspace init script on each node at boot time configures
the gpcdr module to report the HSN metrics described in
Section II. A configuration file provides a definition of each
metric. The script combines these definitions with runtime
routing data to determine the combination of performance
counters to use to generate each metric on that node. It
configures the gpcdr module with those combinations. The
gpcdr module then provides those metrics via files in the
/sys filesystem.

The difficulties in implementation of the LDMS RDMA
transport were due to the lack of readily available documenta-
tion and that early versions of the Cray Linux Environment
(CLE) did not support the functionality we required from
user space. The latter issue was resolved with the release
of CLE4.1UPO1 in late 2012. Direct Cray support resolved
documentation issues.

IV. LDMS

LDMS is Sandia’s solution to meet the needs and require-
ments just described. It was initially developed and deployed
in Sandia’s production HPC environment. NCSA also had
needs and requirements that, due to the scale and proprietary
nature of their Cray XE/XK platform Blue Waters, could not
be met using commodity monitoring tools such as Ganglia
(see Section IV-E). Collaboratively, Sandia, NCSA, and Cray
extended and deployed LDMS on the 27,648 node Blue Waters
system. This section describes the basic LDMS infrastructure,
its functional components, configuration details that give it
flexibility, details of both memory and CPU footprint on both
compute nodes and aggregators, and finally a brief comparison
with other monitoring tools in which we highlight differenti-
ating features which address our particular needs.

A. Overview

LDMS is a distributed data collection, transport, and stor-
age tool that supports a wide variety of configuration options.
A high level diagram of the data flow is shown in Figure 1.
The three major functional components are described below.
The host daemon is the same base code in all cases; differ-
entiation is based on configuration of plugins for sampling or
storage and on configuring aggregation of data from other host
daemons.

Samplers run one or more sampling plugins that periodi-
cally sample data of interest on monitored nodes. The sampling
frequency is user defined and can be changed on the fly.
Sampling plugins are written in C. Each plugin defines a
collection of metrics called a metric set. Multiple plugins can
be simultaneously active. By default each sampling plugin
operates independently and asynchronously with respect to
all others. Memory allocated for a particular metric set is
overwritten by each successive sampling and no sample history
is retained within a plugin or the host daemon.

Aggregators collect data in a pull fashion from samplers
and/or other aggregators. As with the sampler, the frequency of
collection is user defined and operates independently of other
collection operations and sampling operations. Distinct metric
sets can be collected and aggregated at different frequencies.
Unlike the samplers, the aggregation schedule cannot be al-
tered once set without restarting the aggregator. The number of
hosts collected from by a single aggregator is referred to as the
fan-in. The maximum fan-in varies by transport but is roughly
9,000:1 for the socket transport in general and for the RDMA
transport over Infiniband. It is > 15,000 : 1 for RDMA over
Cray’s Gemini transport. Daisy chaining is not limited to two
levels and multiple aggregators may aggregate from the same
sampler or aggregator /dmsd. Fan-in at higher levels is limited
by the aggregator host capabilities (CPU, memory, network
bandwidth, and storage bandwidth).

Storage plugins write in a variety of formats. Currently
these include MySQL, flat file, and a proprietary structured file
format called Scalable Object Store (SOS). The flat file storage
is available in either a file per metric name (e.g. ”Active” and
”Cached” memory are stored in 2 separate files), or a Comma
Separated Value (CSV) file per “metric set” (e.g., {Active,
Cached} memory information set is stored in a single file). The
frequency of storage is dependent on the frequency with which
valid updated metric set data is collected by an aggregator that
has been configured to write that data to storage. Collection of
a metric set whose data has not been updated or is incomplete
does not result in a write to storage in any format.

B. LDMS Components

This section describes, in greater detail, the components
that support the functionality just described. It also describes
typical configuration options used in deployment of these
components.

Idmsd: The base LDMS component is the multi-threaded
ldmsd daemon which is run in either sampler or aggrega-
tor mode and supports the store functionality when run in
aggregator mode. The ldmsd loads sampling, transport, and
storage plugin components dynamically in response to process-
owner issued configuration commands. Access is controlled via
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Fig. 1. In the LDMS use case depicted, rounded rectangles represent Idmsds
while circles depict metric sets. The shaded region separates levels in the
hierarchy (samplers, first level aggregators, second level aggregators left to
right respectively). Arrows depict the direction of data flow. The second level
aggregator writes to local disk.

permissions on a UNIX Domain Socket. At run time Idmsd is
also configured to listen for incoming connection requests on a
socket. While the request and configuration information use the
UNIX socket transport, a stable connection for data transfer is
established using a transport protocol specified by the user. The
same transport plug-in is used to manage all connections to a
ldmsd underlying type. Currently TCP sockets (sock transport
plugin), InfinibandiWARP RDMA (rdma transport plugin),
and Gemini RDMA (ugni transport plugin) interconnect types
are supported.

Samplers: Each sampling plugin combines a specific set of
data into a single metric set. A few of the Lustre filesystem
data entries from a metric set are shown below:

U64 17588842

U64 27547858

U64 1551040415605
U64 111681033094
U64 33185713

U64 33459578

dirty_pages_hits#stats.snx11024
dirty_pages_misses#stats.snx11024
read_bytes#stats.snx11024
write_bytes#stats.snx11024
open#stats.snx11024
closeffstats.snx11024

An Idmsd instance can support many such sampling plugins
all of which run from a common worker thread pool whose
size is user defined at Idmsd run time. Libevent (2.0 or newer)
is used to schedule sampling activities on user-defined time
intervals. Sampling plugins have options for wall-time driven
(synchronous) or interval driven (asynchronous) operation.
More than one sampling plugin hosted by a particular ldmsd
may sample a given metric value; avoiding such inefficien-
cies is up to the user. Finally, Idmsds hosting one or more
sampling plugins are generally referred to as samplers in
this document as that is their main function. There are two
chunks of contiguous memory associated with each metric
set. First is the metadata describing the elements of the data
chunk (name, user-defined component ID, data type, offset
of the element from the beginning of the data chunk) and a
metadata generation number (MGN) which is modified when
the metadata is modified. Second is the chunk of sampled
data values, which includes the MGN, the current data, a
data generation number (DGN) incremented as each element is

updated and a consistent flag. The MGN enables a consumer to
determine if the metadata it has stored matches that associated
with the data. The DGN enables a consumer to discriminate
between new and stale data. The consistent status flag tells a
consumer if the data in the metric set all came from the same
sampling event.

Aggregators: LDMS daemons configured to collect metric
sets from sampler and/or other aggregator Idmsds (See Fig-
ure 1) are called aggregators. The smallest unit of collection
is the metric set. In order to collect from either a sampler or
another aggregator, a connection is established from the col-
lecting aggregator to the collection target. LDMS incorporates
mechanisms to enable initiation of a connection from either
side in order to support asymmetric network access. One or
more metric sets are defined for each connection along with
associated collection interval and transport information. Multi-
ple connections may be established between an aggregator and
a single collection target. This supports different metric sets
having different sampling frequencies. After connection setup,
only the data portion of a metric set is pulled from a target
in order to minimize network bandwidth. The data portion is
roughly 10% of the total set size.

Each data collection is performed by a worker thread from
a common worker thread pool. Typically the worker thread
pool is no larger than the number of CPU cores available on the
host machine. A separate thread pool is configured to perform
connection setup. The connection thread pool was incorporated
to mitigate collector thread starvation that could occur on large
scale systems such as Blue Waters while trying to set up a
large number of connections that might get hung in timeout
on problem nodes.

Aggregators also have the facility to have connections
defined as standby. This enables an aggregator to maintain
connections to a set of samplers that it will not actually pull
data from unless it is notified that the aggregator that was
supposed to handle those samplers (their primary) is down.
This is desirable for large scale systems that would lose a lot
of data between a primary aggregator going down and another
starting up. Note that there is currently no internal mechanism
for a standby aggregator to detect a primary has gone down
automatically. This is accomplished either manually or by an
external watchdog program that provides notification.

Storage: Storage plug-ins are run on aggregators and handle
the task of writing data from metric sets to stable storage with
the defined storage format type. There is a dedicated thread
pool to flush data to stable storage. The flush frequency de-
pends on the number of metric sets collected by the aggregator.
In all formats a time stamp and user configured component
identifier (associated with each metric) is also written. Because
all ldmsds in a system operate asynchronously, it is possible
that from one aggregator collection to the next a metric set has
not been updated or, though highly unlikely, that a collection
occurs during the time a sample is being written on the
sampler of interest. If either or both of these cases occur, the
old or partially modified metric set is not written to storage
and collection is scheduled for the next collection interval.
The DGN and consistent status flag are used to detect these
conditions.

Figure 2 provides a data flow diagram, annotated with the



associated API’s, for each of the components just described.
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Fig. 2. Diagram of LDMS data flow with internal calls and API for the pull
model. {1} - {4} are sampler flows, which are independent from aggregator
flows {a} - {i}. Sampler flow starts from ldmsd load and configure a sampler
plugin {1}, and the plugin consequently creates an LDMS set {2}. Afterward,
ldmsd periodically tells the plugin to sample metric values from the data source
{3}. On each sample call, the plugin reads metric values from data sources
and updates the values in the metric set accordingly {4}. Aggregator flow
starts with an update thread in ldmsd aggregator performing a set lookup {a}.
The LDMS library on the sampler end will reply to the lookup request with
the metric set information or error, if the set was not found {b}. If the lookup
returns an error, the metric update thread will keep performing lookup in the
next update loop (back to {a}). After lookup completes, a local metric set
is created as a mirror of the remote metric set {c}, and a lookup_cb ()
function is called to notify ldmsd {d}. In the next update loop, the metric
update thread will do the data update {e}. If the transport is RDMA over IB
or UGNI, the data fetching {f} will not consume CPU cycles. On data update
complete, the metric values in the aggregator metric set are updated {g}, and
update_complete_cb () is called to notify Idmsd {h}. ldmsd optionally
stores the updated data if a store is configured {i}.

C. Common Configuration Options

While a complete description of all configuration options
is beyond the scope of this paper, we present those used in a
typical deployment.

A sampler is created by running a Idmsd and configuring
sampler plugins. Configuration options for /dmsd samplers are:
transport type, port number, Unix Domain Socket path and
name, debugging log file path, and plug-in name. Common
control flags for an individual sampler are: component ID,
metric set name, sampling interval, and optionally synchronous
and offset. Some samplers have additional control options.

An aggregator is created by running a Idmsd and config-
uring target connections, metric sets to collect, and collection
frequencies. Note that many metric sets can be collected on
a single connection. The configuration options in this case
for the base ldmsd are: transport, port number, Unix Domain
Socket path and name, log file path and name, amount of
memory to allocate for metric sets, and number of worker
and connection threads to create. Configuration options for
adding target metric sets to collect are: target host, connection
type, transport, port, metric set(s), and period of collection.

Note that transport and port number must match those of the
target but not collection and sampling periods. Optionally re-
dundant collection connections can be defined for fast failover
purposes. Collection can be defined to be synchronous. Note
that synchronous operation refers to an attempt to collect (or
sample) relative to particular times as opposed to relative to
an arbitrary start time.

Storage is configured by creating and configuring an ag-
gregator and then configuring a storage instance. Each store
type has specific configuration parameters. The following
parameters apply to the CSV storage type: store type, store
path and file name, metric set to store, optionally write header
to separate file. Storage may be specified at a {producer, metric
name} granularity, though the typical use case is to specify just
the metric set. In the typical case, the corresponding data from
all producers is stored.

D. Resource Footprint

In this section we provide a general description of storage,
memory, CPU, and network footprints for both samplers and
aggregators on a production capacity Linux cluster at SNL and
the Cray XE/XK Blue Waters system at NCSA. The actual
resource usage for any deployment will depend on sampler
plugin mechanisms, sampling and collection frequencies, met-
ric set size, and storage configuration.

LDMS requires less than four megabytes of file system
space to install and less than two megabytes of memory per
node for samplers to run in typical configurations. LDMS is
run per node, not per core but can be bound to a core using a
variety of platform specific mechanisms (e.g., numactl).

Memory registration of a few kilobytes is needed for
RDMA-based transport of locally collected data. Aggregation
nodes require a similar amount of registered memory per
connection. Additionally, a sampler requires storage for both
data and metadata for each metric set, and an aggregator
requires this for each metric set it will be collecting plus some
additional memory for managing this data. On Chama the
metric sets consume 44kB and on Blue Waters 24kB. A custom
memory manager is employed to manage memory allocation.

Data storage requirements are modest for the CSV storage
plug-in. A day’s worth of data for 467 metrics per node
on SNL’s 1296 node Chama system with 20 second sam-
pling/collection intervals is about 27GB (10TB raw or 2.5TB
compressed for a year). On Blue Waters a day’s worth of
raw data stored to CSV is about 43GB (16TB raw or 4TB
compressed for a year).

CPU utilization of samplers on compute nodes is typically
a few hundredths of a percent of a core in both deployments
at a sampling period of 1 second. First level aggregators on
Chama, each hosting 7 metric sets (467 metrics) from 156
samplers with collection intervals of 20 seconds, utilize about
0.1 percent of a core and 33MB of memory. The second level
aggregator, aggregating from 8 first level aggregators consumes
about 2 percent of a core and 150MB of memory. On Blue
Waters each aggregator actively collects 1 metric set with 194
metrics from 6912 nodes and maintains standby connections
and state to another 6912. Here each aggregator is allocated
900MB of RAM and consumes about 100% of a core.



On Chama the total data size for all 7 metric sets being
collected over the IB network from each node is 4kB. This
translates into an additional SMB transiting the IB fabric every
20 seconds (note that this traffic is spread across the whole
system not on a single link). On Blue Waters it is 44MB.

E. Related Work

1) Monitoring systems: Numerous tools exist for system
monitoring with Ganglia [11], in particular, in widespread use.
Ganglia has a number of features that make it unsuitable even
for general monitoring of large scale HPC systems. The project
info page [11] only claims scalability to 2000 nodes. It has
a considerable number (7) of installation dependencies, most
of which are not typically installed on large scale capability
platforms such as the Cray XE/XK platforms.

In addition, Ganglia and Nagios [12] typically target larger
collection intervals (10’s of seconds to 10’s of minutes) and
many fewer metric variables than LDMS with data used
for general monitoring (Ganglia) and failure alerts (Nagios)
rather than for system and application resource utilization
analysis. Neither supports subsecond collection frequencies.
Frequent collection using Ganglia can have significant impact.
On Chama we found the collection time per metric for Ganglia
vs. LDMS from /proc/stat and /proc/meminfo to
be about two orders of magnitude greater (i.e. 126 usec
per metric for Ganglia vs. 1.3 usec per metric for LDMS).
Ganglia includes both data and its description (metadata) at
each transmission but user-defined thresholds are typically set
to reduce the amount of data sent. This thresholding can reduce
behavioral understanding if set too high. Ganglia stores to
RRDTool [13] which ages out data and thus requires a separate
data move if long term storage is desired.

Vendor specific implementations (e.g., Cray’s SEDC [14])
for system monitoring have the potential for better performance
than general purpose tools. However, these may not be open
source and may not support user-addition of samplers and/or
general output formats.

The open-source tool most similar to LDMS is Perfor-
mance Co-Pilot (PCP) [15], with some overlap to LDMS in
design philosophies. PCP supports a pull-only model, a single-
hop-only transport, a single archive format used by its display
and analysis tools, and a large variety of data acquisition
plugins. LDMS supports C language performance-oriented
plugin storage and transport APIs, but currently provides no
GUI tools.

2) Profiling systems: Collectl [16] and sar [17] are single
host tools for collecting and reporting monitoring values.
Neither include transport and aggregation infrastructure. Both
can continuously write to a file or display; collectl can also
write to a socket. While both have command line interfaces as
well, use of these by applications would require an exec call
and parsing of output data by the application, as opposed to a
library interface. Only collectl supports subsecond collection
intervals.

LDMS is not intended as a substitute for profiling tools,
such as OProfile [18] or CrayPat [19]. LDMS takes a com-
plimentary approach by collecting system and application re-
source utilization information as a continuous baseline service.

Additionally, since LDMS samplers can be configured on-the-
fly, independent multi-user support can be configured at run-
time to provide higher fidelity insight on a per user/job basis.

3) Performance data transport: Few HPC-oriented li-
braries exist to provide scalable, fault tolerant, transport and
aggregation of frequent small, fixed size, binary messages,
although numerous libraries support Map-Reduce [20] based
on the TCP transport. MRNet [21] is a tree-based overlay
network which can be used as the transport for tools built upon
it. Its intended use is data reduction at the aggregation points
as opposed to transport of all the data. Currently there is no
support for RDMA. The tree setup does not support multiple
connection types or directions. In contrast, LDMS uses an
interval driven polling and aggregation process (above the level
of the network transport plugins) which eliminates duplicate
messages, bypasses and later retries non-reporting hosts, and
allows fail-over support for non-reporting aggregators.

FE. Blue Waters - Deployment

Figure 3 depicts the high level configuration on Blue
Waters. The sampler daemons are installed in the boot image
for compute nodes and are started automatically at boot.
Cray service nodes launch aggregator ldmsds from the shared
root partition. Four service nodes were selected to serve as
aggregators in a manner that evenly distributes traffic across
the slowest dimension of the high speed network. Their data
store files are linked to a named pipe that is used by syslog-
ng to forward the data to NCSA’s Integrated System Console
(ISC) database. ISC is a single point of integration of nearly
all system log, event, and state data that allows us to take
actions based on information that spans subsystems. ISC both
archives the data for future investigations as well as stores the
most recent 24 hours of node metrics for live queries.

Samplers Aggregators Store
(27648) (4)
RDMA Read Al

edundant”

Fig. 3. LDMS configuration on Blue Waters. This includes redundant
connections (dashed arrows) to each sampler ldmsd for fast failover capability.
Rather than writing directly to local stable storage, the aggregators each write a
CSV file to a local named pipe. Data from this pipe is forwarded by syslog-ng
to the ISC where it is bulk loaded into a database.



On Blue Waters, a sampler collects one custom dataset
whose data comes from a variety of independent sources,
including HSN information from the gpcdr module, lustre
information, LNET traffic counters, network counters, and
cpu load averages. In addition we derive information over
the sample period, including percent of time stalled and
percent bandwidth used. The latter uses estimated theoretical
maximum bandwidth figures based on link type. In production,
we currently sample at 1 minute intervals.

G. SNL Capacity Systems - Deployment

Samplers L1 Agg L2 Agg
(1296) (8) (1)
(Writes to Local Store)
agg-1

Socket File

Write

Fig. 4. LDMS configuration on Chama. RDMA is used for data reads
between the samplers and first level aggregators while socket connections are
used between first and second level aggregators. The second level aggregator
aggregator writes data in CSV format to local disk.

Figure 4 depicts SNL’s LDMS deployment on Chama.
We package LDMS software in RPMs which supplement
the TOSS2 [22] distribution. These RPMs provide libevent
2.0 [23], LDMS, and our default set of storage and sampler
plug-ins in relocatable library form to simplify installation
in the image directories served to diskless nodes. At boot
time, initialization scripts launch the hierarchy of samplers and
aggregators. We tailor machine-specific configuration files to
ensure that the daemons connect efficiently; LDMS does not
support autodiscovery-based configuration.

We deploy LDMS samplers on the compute nodes and
aggregators on service nodes of Chama, using the RDMA
transport to minimize interference with computations. A disk-
full server runs a second level aggregator configured with the
CSV storage plug-in and the socket transport, pulling data from
the service nodes.

Users seeking additional data on these systems may run
another LDMS instance configured to use their specified
samplers and a different network port as part of their batch
jobs. The owner of an LDMS instance controls it through a
local UNIX Domain socket.

On Chama, a sampler collects 7 independent metrics sets
from sources in /proc and /sys including memory, cpu
utilization, lustre information, nfs information, ethernet and
IB traffic. In production, we sample at 20 second intervals.

V. IMPACT TESTING AND ANALYSIS

We ran both actual applications and test codes concurrently
with LDMS to assess the impact of additional operating system
(OS) noise and network contention on applications’ execution
times. The effect of OS noise on application execution times
on Linux clusters has been well studied (e.g., [24]-[26]).
Ferreira et. al. [26] have shown that various OS noise patterns
for a consistent and representative HPC “noise amount” can
result in slowdowns of up to several orders of magnitude
for representative HPC applications at large scale (up to 10K
nodes). The LDMS experiments for this study were conducted
using several realistic sampling/collection periods (i.e., 1, 20,
and 60 seconds) to check for OS noise impact on application
run times.

A. Blue Waters

We ran a variety of short benchmarks across the machine.
PSNAP is discussed in Section V-Al and Figure 5; all others
are described in subsequent subsections and summarized in
Figure 6.
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Fig. 5. PSNAP results: Histogram of occurrences vs. loop time (us) with 1

second sampling data (Xs’) compared to none (red boxes).

1) PSNAP: PSNAP [27] is an OS and network noise
profiling tool which performs multiple iterations of a loop
calibrated to run for a given amount of time. On an unloaded
system, variation from the ideal amount of time can be
attributed to system noise. We ran PSNAP with and without
monitoring in order to determine the additional impact of the
monitoring. PSNAP was run without its barrier mode, making
the effects on each node independent. 32 tasks per node were
executed with a 100 us loop.

Figure 5 compares monitored and unmonitored results. The
one second sampling interval shows an additional 50 — 60
events, out of 16 million total, out in the tail with an additional
delay of 375 — 475 ps. This is in line with the expected delay
caused by the known sampling execution time of order 400 pus
and the expected number of occurrences given the execution
time of around a minute and the sampling period of 1 second.
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Fig. 6. Benchmark Variation Under LDMS variations. The "no net’ variations
disable aggregation and storage to differentiate impact due to changed network
behavior. Error bars show the range of observations.

While an application process running on the node can only
be impacted during the sampling time, an MPI application
might wait upon processes on other nodes and therefore
random sampling across nodes might result in greater impact.
The synchronized sampling feature (Section IV-B) has the
additional benefit that all sampling across the nodes can be
coordinated in time, thereby bounding the number application
iterations affected.

2) MILC: MILC [28], [29] is a large scale numerical
simulation used to study quantum chromodynamics on a wide
variety of platforms. It is sensitive to interconnect performance
variation. The test problem application was run on 2744 XE
nodes with a topology aware job submission to minimize
congestion. It uses a 64B Allreduce payload in the Conjugate
Gradient (CG) phase with a local lattice size of 6. Overall
performance is a combined function of all phases, with overall
performance most dependent on the CG phase which has many
iterations per step. Within phases, performance variations of
the average time do not consistently increase with expected
increasing impact of each LDMS configuration. Even when
variation of the average is measurable, the variation is within
the wide range of observed values. No statistically significant
impact was observed.

3) LinkTest: Cray has developed an MPI program that
measures the individual link performance within a job. For
this test we measure the extreme cases of unmonitored and
monitoring at one second intervals. We used 10,000 iterations
of 8kB messages. This gives us multiple collections of data
per link test. The unmonitored result is 1.74278 milliseconds
per packet and the monitored time is 20 nanoseconds shorter.
The difference is not statistically significant.

4) MiniGhost: MiniGhost [30] is used for studying only
the communications section of similar codes. Our instrumented
version [31] of MiniGhost reports total run time, time spent

in communication, and time spent in a phase which includes
waiting at the barrier (GRIDSUM). We chose input that yields
90 second run time on 8,192 nodes in order to determine
effects on communication. Because of the short runtime, three
repetitions of the code were made at the extremes: unmonitored
and sampling at one second intervals. Each repetition was
launched on the same nodes and an internally computed
ordering based on the known communication pattern of the
application was used. There was no negative impact in any
measure when using LDMS at the 1 second collection interval.

5)IMB: We tested the Intel MPI benchmark (IMB) for
MPI_AlIReduce on a set of 2744 nodes. This node set was
topology optimized for maximum network performance. This
test used a 64B payload and 24 tasks per node. Overall, there
is not a correlating impact with the LDMS variants.

B. SNL Capacity System

We assessed the impact of LDMS on different applica-
tions. Three conditions were considered: no LDMS (NM -
unmonitored) sampling on the node at 20 second intervals
(LM - low monitoring) and sampling on the nodes at one
second intervals (HM - high monitoring). We ran the ap-
plications as a consistent ensemble of simulations to nearly
fully utilize Chama. Two Sierra Low Mach Module: Nalu
(Nalu, Section V-Bl) simulations utilizing 1,536 and 8,192
PE, two CTH (Section V-B3) simulations utilizing 1,024 and
7,200 PE, and two Sierra/SolidMechanics implicit (Adagio,
Section V-B2) simulations utilizing 512 and 1,024 PE. Each
one of these simulations was forced to use a consistent set of
nodes to assess variability and each ensemble was simulated
three times. In addition PSNAP was run on 19200 processing
elements under NM, HM, and a special case of HM with only
half the samplers.

A dedicated application time (DAT) was used to perform
this study. During this time, the only simulations running on
the machine were ours. However, Chama shares its Lustre file
system with another cluster, which may have caused contention
with our applications for these resources.

Our application performance results, other than those of
PSNAP, are summarized in Figure 7 and explained below.

1) Sierra Low Mach Module: Nalu: Nalu is an adaptive
mesh, variable-density, acoustically incompressible, unstruc-
tured fluid dynamics code. Nalu is fairly representative of
implicit codes using Message Passing Interface (MPI) and
demonstrates good-to-ideal weak scaling trends [32]. The
simulation performed is a jet in crossflow [33]. Preliminary
traces collected for 5 time steps of the test configuration show
that 47.5% of its time is spent in computation, 44% of its
time on MPI “sync” operations, and the last 8.5% on other
MPI calls. We expect Nalu to be sensitive to both node and
network slowdown.

Nalu has built-in timers of specific parts. The mpiexec
invocation was wrapped by t ime to provide a global timer of
the simulation. Although all runs used the same set of nodes,
the cost of major internal phases varied widely for the 8,192
PE simulations, particularly for the continuity equation a 200
second spread is seen in the unmonitored runs. This variation
has not been observed with identical simulations at this scale
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Fig. 7. Application Performance Variation. All three applications with core
counts indicated were run as a job ensemble multiple times for each LDMS
configuration. In all runs the rank to host/core mappings were identical to
eliminate variation due to configuration differences.

on Cielo and is likely caused by operating system noise; a root
cause analysis is currently being performed. Variations in the
cost of numerous shorter phases only sometimes cancel those
large variations. The variation present within these 8,192 PE
simulations dwarfs any speedup or slowdown caused by the
LDMS monitoring. Ergo, LDMS monitoring appears to have
no practical impact on the run time of these Nalu simulations.

2) Adagio: Adagio is a Lagrangian, three-dimensional code
for finite element analysis of solids and structures built on the
Sierra Framework [34], [35]. The model used studies the high
velocity impact of a conical war-head meshed with about half
a million elements. We use Adagio to investigate the impact of
LDMS monitoring on the run time because Sierra applications
consume a large fraction of the node-hours on Sandia HPC
clusters. Restart files are dumped to the high speed Lustre I/O
subsystem. The combination of mesh files, results files, history
files, restart files, and a log file pose storage requirements
approaching terabytes and typically require the system to
maintain throughputs in hundreds of gigabytes/sec. A large
fraction of the computation time is in the contact mechanics
which stresses the communications fabric. The combination
of the computations, communications and I/O characteristics
make this a good application to investigate the impact of
LDMS. As can be seen from Figure 7, there is no appreciable
impact from LDMS compared to the noise in this data.

3) CTH: CTH is a multi-material, large deformation, strong
shock wave, solid mechanics code that uses MPI for commu-
nications [36]-[40]. The CTH (version 10.3p) simulation we
benchmarked is a 3D shock physics problem with adaptive
mesh refinement (AMR) typical of those run at Sandia: the
three-dimensional evolution of a nuclear fireball [41]. In gen-
eral, processors exchange large messages (several MB in size)
with up to six other processors in the domain, with a few
small message MPI_Allreduce operations. CTH is sensitive to
both node and network slowdown [42], [43]. We studied CTH
interaction with LDMS due to its heavy use in SNL HPC
environments and its sensitivity to perturbation on both nodes
and network. The 1,024 core simulation is set to execute 600

time steps while the 7,200 core simulation is set to execute
1,200 time steps, targeting 18 minutes of sustained run time.
LDMS monitoring appears to have no effect on the run time
of these CTH jobs.
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Fig. 8.  Histogram of instances vs loop duration (us) for no monitoring
(NM)(top), 1 sec sampling with samplers contributing about half the metrics
(HM HALF); and and 1 sec sampling interval for all samplers (HM) (bottom).

4) PSNAP: PSNAP was run on Chama under the condi-
tions of: no monitoring (NM) , LDMS sampling on the nodes
at 1 sec intervals with samplers contributing about half the
metrics (HM HALF), and all samplers at 1 sec intervals (HM).
1M iterations of a 100 us loop on 1200 nodes were used in
both cases. PSNAP was not run in barrier mode. Histograms of
loop instances vs loop duration (us) for each case are presented
in Figure 8.

While NM and HM HALF are comparable, there are
substantially more elements in the tail in HM case. Sampling
impact is expected to be subject to the number of samplers
and the time a sampler spends in sampling.

VI. CHARACTERIZATIONS

While detailed data analysis is not a part of this work,
in this section we present some initial views of the data of
interest that motivate its collection. Over a 24 hour period for
Blue Waters the dataset has 40 million data points per metric
or 7.7 billion data points total. For Chama the data set is 5.6
million data points per metric or 2.6 billion data points total.
‘We show that for data of this size, features of interest can be
discerned even in simple representations.



A. Blue Waters

For Blue Waters, we specifically target presentation and
features of data that must be considered system-wide in order
to understand the impact on an application’s performance due
to the distributed network topology. This is the first insight
into this type of system information at this scale and fidelity.

As mentioned in Section II, an application’s performance
may be degraded by an application’s communication pattern
resulting in traffic routed through significantly congested links.
The routing algorithm between any 2 Gemini is well-defined;
thus the links that are involved in an application’s communi-
cation paths can be statically determined. Viewing values in
both the node and Gemini spaces can thus give insight into
which applications may be impacted by network congestion.

Information is thus presented a) in 2D layout of values per
node over a 24 hr period and b) for a single system snapshot
in time shown in the 3D Gemini mesh coordinate space. In
order that high value features may stand out better: a) in the
2D plots, plotted points are larger than the natural point size
(i.e., there are not 27K pixels plotted in the y dimension) and
thus may overlap, and b) in the 3D plots data point size is
proportional to data values. In both cases quantities under a
threshold value of 1 have been eliminated from the plots.

1) HSN Link Stalls: One of the metrics used to identify
network congestion is time spent in stalls. The Gemini network
utilizes credit-based flow control. When a source has data to
send but runs out of credits for its next hop destination, it must
pause (stall) until it receives credits back from the destination.
Stalls when sending from one Gemini to another are referred
to as credit stalls. We collect stall counts in each of the link
directions and also derive the percent of time a link spent
stalled on output link resources.

Over the 24 hour period considered here, the maximum
value of percent time spent stalled over each 1 minute sample
interval obtained was 85 percent in the X+ direction. Stalls for
each node in this direction over time are presented in Figure 9
(top). 2 nodes share a Gemini and thus have the same value,
however, since application analysis may be in terms of nodes,
we report this information for each node separately. It can be
seen that significant congestion can persist for many hours: for
example, significant durations of data values in the 30 —40+%
range for up to 20 hours (label A), and of data values in the
60 + % range for up to 1.5 (e.g., label B) hours.

A system snapshot at the time of the maximum value of
percent time stalled is shown in terms of the X, Y, Z network
mesh coordinates in Figure 9 (bottom). The mesh topology is a
3D torus with dimensions 24x24x24. Thus the entire network
is shown within the bounding box. Each data point represents
a Gemini. The maximum is in the group in the rear of the
figure. Because of the toroidal connectivity, this group wraps
in X and connects with the group in the left at the same value
of Z (circled, labeled C). Another high value region is part of
a group in the XY plane that extends into Z (labeled D). For
this quantity, features naturally have extent in the X direction.
Characterization of such features through time can give insight
into how a congested link or region could have cascading
effects. Although there can potentially be 13824 data points in
this figure, the areas of high congestion are easily discerned.
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Fig. 9. Time (%) spent in credit stalls in the X+ direction (per node Gemini)
at 1 minute intervals over a 24 hours period (top) for Blue Waters. A system
snapshot showing regions of congestion in the 24 x 24 x 24 Gemini 3D
torus coordinate space (bottom). Torus wrap-around not shown. Due to the
distributed Gemini network topology, long durations of high stall levels can
degrade the performance of multiple applications sharing those links. In the
node view (top) some Gemini are seen to spend 30-40 percent of time in stalls
for up to 20 hours (label A). A maximum (85%) is shown in the snapshot
(bottom, label C rear). Labeled regions further described in Section VI-A.

2) Bandwidth Used: A related but different quantity reflec-
tive of network congestion is percent of theoretical maximum
bandwidth used (Section IV-F). The theoretical maximum is
dependent on the link media type. The highest value over the
course of the same day is in the Y+ direction at 63 percent.
This is shown in Figure 10. Note the value is significantly
higher than typically observed values in the system over this
time and is readily apparent in the figure.

3) Lustre Opens: Figure 11 illustrates how observing sys-
tem wide information can provide a simple means to determine
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what system components over what times are consuming
particular resources. In this figure it can be seen from the
horizontal lines that certain hosts are performing a significant
and sustained level of Lustre “opens”. These can be easily
correlated with user and job. The vertical lines show times
when Lustre “opens” occur across most nodes of the system.
Whether this is indicative of a large user job or a system wide
problem can be determined by seeing if the nodes involved are
from a single job or span many.

B. SNL Capacity System

On Chama, in addition to creating system views we
combine the system information with scheduler data to build
application profiles. A profile for a 64 node job terminated by
the OOM Kkiller is shown in Figure 12. Total per node memory
available is 64G. Memory imbalance and change in resource
demands with time are readily apparent. This type of informa-
tion can give the user insight into the application’s demands
under production conditions and guide better application-to-
resource mapping where there is imbalance.

VII. CONCLUSION

We have described our motivations for continuous whole
system monitoring of network, file system and other resource
related metrics. We have described our Lightweight Distributed
Metric Service framework for performing this task and demon-
strated its suitability for large-scale HPC environments, partic-
ularly with regard to design and deployment features, scala-
bility, resource footprint and system and application impact.
We have presented representations of system and application
data from both NCSA’s Blue Waters Cray XE/XK platform
and SNL’s Chama cluster in which features of interest can be
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discerned. In particular, the unique suitability of LDMS for
large-scale HPC environments has enabled the first insight at
this size and fidelity into continuous HSN performance counter
data on Blue Waters.

VIII. FUTURE WORK

Future work involves deriving insight from the data ob-
tained here, particularly with regard to performance issues that
require consideration of the full system data. The large dataset
size due to the necessary fidelity of the data presents challenges
in visual representations and analysis. On the Blue Waters
system we seek to discover, and perhaps enable mitigation of,
performance issues due to the shared network.
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